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Abstract
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1 Introduction

In the Fall of 2021, US News and World Report released long-anticipated rankings of Amer-

ican middle and elementary schools, based on test scores and other measures of student

achievement. These and other school ratings—such as those of GreatSchools.org, Niche.com,

and various state accountability o�ces—meet a growing demand for information on school

quality. The intense public interest in school performance is also clear on real estate sites like

Zillow and Redfin, which feature school ratings prominently. School ratings a↵ect families’

choices of where to live and where to enroll (Bergman and Hill, 2018; Hasan and Kumar,

2019), as well as district decisions to restructure schools (Rocko↵ and Turner, 2010; Ab-

dulkadiroğlu et al., 2016; Cohodes et al., 2021).

Do school ratings serve the public interest? Journalists like Barnum and LeMee (2019)

have focused attention on the strong correlation between widely reported rankings and the

racial make-up of schools. In urban districts enrolling large numbers of non-white students,

highly-rated schools tend to enroll disproportionate shares of white and Asian students.

For example, enrollment at US News’ top five New York City middle schools is 80 percent

white and Asian, compared with the 35 percent white and Asian share in the district as a

whole.1 Statistics like these suggest that links between published school ratings and racial

composition may contribute to racial segregation (National Fair Housing Alliance, 2006;

Yoshinaga, 2016).

The correlation between school ratings and student race may reflect an uncomfortable

truth: Black and white students have long attended schools of di↵ering quality, a fact docu-

mented in economics by Welch (1973). Improvements in the quality of predominately-Black

schools account for much of the reduction in Black-white wage gaps seen from the 1950s

through the 1970s (Card and Krueger, 1992a,b). This progress notwithstanding, schools

highly segregated (Monarrez, 2021). The higher achievement and graduation rates found

at schools that enroll more white students may reflect these schools’ greater impact on

learning—a view reflected in decades of argument over access to selective enrollment high

schools like the Boston Latin School and New York’s Stuyvesant, Brooklyn Tech, and Bronx

Science (Jonas, 2021).

The link between school rankings and schools’ racial make-up may also be an artifact

of selection bias. Higher-income and non-minority students tend to have better educational

outcomes for reasons other than the quality of the schools they attend. School ratings

based on student achievement levels are therefore likely to conflate school quality with the

1The list of top New York middle schools can be found at https://www.usnews.com/education/k12/
middle-schools/new-york. Demographic shares are calculated for the 2018-2019 school year using the
administrative data described below.
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background of enrolled students. More sophisticated ratings which adjust for student de-

mographics and lagged achievement, like conventional value-added models for teachers (e.g.

Chetty et al., 2014; Rothstein, 2010, 2017) and schools (e.g. Deming, 2014; Beuermann and

Jackson, 2022), may nevertheless be biased by unobserved di↵erences in student composi-

tion. Recent research suggests such selection bias is pervasive (Abdulkadiroğlu et al., 2020).

Biased rating schemes direct households to low-minority rather than high-quality schools,

while penalizing schools that improve achievement for disadvantaged groups.

This paper investigates the relationship between public school ratings and student racial

composition, drawing broader implications for school assessment systems. Our analysis

focuses on two properties of ratings: predictive accuracy, defined as the rating’s r-squared in

a regression of a school’s true causal e↵ect on achievement, and racial imbalance, defined as

the slope in a regression of school ratings on white enrollment shares. If schools that enroll

more white students tend to be better, in the sense of having higher causal value-added, those

wishing to inform the public about school quality face an uncomfortable trade-o↵ between

predictive accuracy and racial imbalance.

Our findings show this trade-o↵ to be much smaller than the correlation between school

ratings and racial composition suggests. This conclusion is reached in two steps. First,

we derive a simple but novel characterization of the theoretical link between accuracy and

imbalance, based on unobserved school quality. Second, we estimate the components of this

trade-o↵ using the random variation in school attendance generated by centralized school

assignment systems (Abdulkadiroğlu et al., 2017, 2022). Specifically, we adapt the instru-

mental variables value-added model (IV VAM) approach of Angrist et al. (2021) to gauge

relationships between causal value-added, student race, and school ratings.

We study the trade-o↵ between predictive accuracy and racial imbalance for New York

City and Denver middle schools. Both districts allocate seats using a centralized match that

generates partially randomized variation in school assignment, supplying the instruments

needed for IV VAM. These two districts are also central to discussions of segregation and

school access: New York is America’s largest district, with a long history of de facto segrega-

tion, while Denver is a majority Hispanic district with a unified enrollment match combining

charter and traditional public schools.

School performance ratings based on achievement levels and on achievement growth are

both highly correlated with schools’ racial composition in New York and Denver. Our anal-

ysis suggests this correlation is largely an artifact of selection bias. IV VAM estimates show

causal value-added is unrelated to racial composition in both cities. Together, these findings

imply that a conventional progress-based rating adjusted to be uncorrelated with student race

has predictive accuracy slightly better than that of the corresponding unadjusted measure.
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Moreover, in both New York and Denver, this racially-balanced progress rating essentially

coincides with an optimal rating constructed to best predict causal value-added as a function

of conventional progress ratings, student race, and school sector. Racially-balanced ratings

may thus represent a rare “free-lunch” for school accountability policy: a simple adjustment

to existing ratings, requiring only data on student race, eliminates racial imbalance while

also improving the ratings’ value as predictors of true school quality.

2 Settings and Data

The Denver sample includes students applying for sixth-grade seats at any middle school in

the Denver Public Schools district between the 2012-2013 and 2018-2019 school years. The

New York sample includes sixth-grade applicants to New York City middle schools for the

2016-2017 through 2018-2019 school years. Data include the school preferences and priori-

ties submitted by each applicant and the assignments generated by each district’s centralized

school assignment system. We also have data on subsequent school enrollment, student de-

mographics, and achievement scores.2 Denver outcomes are from the Colorado Student

Assessment Program (CSAP) and Colorado Measures of Academic Success (CMAS) stan-

dardized tests. New York outcomes come from New York state achievement tests. The main

outcome for our analysis combines scaled math and ELA scores in sixth grade, standardized

to be mean zero and standard deviation one in each city and year. Our combined math

and ELA measures are similar to ratings reported by GreatSchools.org, school districts, and

states.

Students in Denver rank up to five schools in the district. Admissions priorities are based

on criteria like sibling status and the applicant’s residential neighborhood. The deferred

acceptance (DA) algorithm with a single lottery tie-breaker assigns students to schools. New

York school applicants rank up to 12 academic programs; while schools may host more than

one program, our analysis aggregates multiple programs to the school level. The New York

DA algorithm features a variety of tie-breakers, with “unscreened” schools using a common

random lottery number and “screened” schools using non-random tie-breakers such as past

test scores and grades.

Our empirical strategy leverages the randomness embedded in each city’s school assign-

ment mechanism. We follow Abdulkadiroğlu et al. (2017, 2022) in computing each appli-

cant’s risk (i.e. probability) of assignment to each school as a function of the applicant’s

school preferences and priorities. Assignment risk for Denver applicants is computed using

the propensity score formula derived by Abdulkadiroğlu et al. (2017). This formula is an

2The samples analyzed here are derived from those used in Angrist et al. (2021).
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analytical large-market approximation to the school assignment probability for DA with a

lottery tie-breaker.3 Assignment risk for New York applicants is computed as described in

Abdulkadiroğlu et al. (2022). New York assignment risk depends in part on bandwidths

for screened school tie-breakers, similar to those used in standard regression discontinuity

designs.4 Score conditioning yields a stratified randomized trial. Conditional on assign-

ment risk, school assignment is independent of applicant characteristics, both observed and

unobserved—an application of the Rosenbaum and Rubin (1983) propensity score theorem.

Our analysis focuses on two achievement-based measures of school quality that repli-

cate widely-disseminated state ratings for Colorado and New York State. Levels ratings

consist of the share of students scored as proficient on state assessments, averaged across

math and English language arts (ELA) tests. Progress ratings are based on year-to-year

improvement in the average math and ELA achievement percentiles of enrolled students.

This mirrors the student growth percentiles reported by many states and districts, as well

as the GreatSchools.org Student Progress Rating. Our interest in progress ratings is partly

motivated by previous findings that growth-type measures more accurately predict school

quality (Angrist et al., 2017, 2021). Ratings are computed separately for every school and

year, and are standardized to be mean zero with a standard deviation matching our esti-

mated standard deviation of school value-added, detailed below. Appendix B.1 details the

school ratings construction.

Appendix Table A1 summarizes the students and schools in the Denver and New York

samples, separately for all enrolled students and for the subsample of applicants for whom

school assignment has a random component. We refer to the latter group as the sample

with risk.5 As is typical in large urban districts, most Denver and New York students are

from disadvantaged backgrounds, with over 70 percent eligible for a subsidized lunch. In both

districts the demographic characteristics, enrollment status, and baseline scores of applicants

with assignment risk are similar to those of the full sample of sixth-grade students. The New

York sample includes 1,584 school-year observations with a median enrollment of 83 students.

The Denver sample includes 435 school-year observations with a median enrollment of 81

students.6

The natural experiment induced by centralized assignment is validated by 1, which com-

pares the characteristics of students o↵ered seats at higher-rated and lower-rated schools

3The Denver score is computed using the formula score described in Abdulkadiroğlu et al. (2017).
4The New York score is the local DA score described in Section 4.2 of Abdulkadiroğlu et al. (2022).

Bandwidths used here are computed as suggested by Calonico et al. (2019).
5Formally, applicants in this sample (indexed by i) have a propensity score pij strictly between zero and

one for at least one school j. Roughly a quarter of the students in each sample face some assignment risk.
6The 10th (90th) percentile of school-year enrollment is 36 (279) in New York and 19 (141) in Denver.

Appendix Table A2 further summarizes the samples of schools in both settings.
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(these comparisons are based on the progress rating). Uncontrolled comparisons show large

di↵erences in characteristics between those o↵ered seats at high- and low-rated schools, but

these di↵erences vanish when adjusted for assignment risk. The fact that risk adjustment

balances observed characteristics suggests unobserved characteristics are likely balanced as

well.7

Levels and progress ratings are highly correlated with the racial composition of schools,

a fact documented in Figure 1. Specifically, the figure plots average school ratings computed

conditional on share white in bins of width 0.1, along with the corresponding regression line

fit to school-level data. Evidence of racial imbalance is especially strong for levels ratings. In

New York, a regression of levels ratings on share white yields a slope coe�cient of 0.70 with

a robust standard error of 0.03. The standard deviation of each rating equals roughly 0.2,

so this coe�cient implies that a ten percentage-point increase in share white is associated

with a rating increase of about 0.35 standard deviations. The corresponding slope falls to

0.22 for progress, but the relationship remains clear and statistically precise. Evidence of

racial imbalance for Denver is similar, with coe�cients of 0.85 for levels and 0.38 for progress

(both precisely estimated).

3 Econometric Framework

The distinction between causal value-added and selection bias is cast here in terms of a

constant-e↵ects causal model of education production. Consider a population of students,

each attending one of J schools in a district. Student i’s potential academic achievement at

school j 2 {1, ..., J}, denoted Yij, is:

Yij = �j + "i, (1)

where �j gives the contribution of attendance at school j to achievement. Parameter �j is

school j’s quality or value-added. Random variable "i reflects other factors that influence a

student’s academic achievement, such as family background, motivation, and ability.

Equation (1) is a constant-e↵ects model because "i is assumed to vary across students

but not schools. For any two schools, j and k, and any applicant, i, Yij �Yik = �j ��k gives

the causal e↵ect of attending j rather than k. This constant-e↵ects setup allows us to focus

7Balance checks regress student characteristics on the progress rating of the school where applicants are
o↵ered a seat, along with a dummy indicating whether the applicant was o↵ered a seat anywhere. Risk
controls consist of the expected progress rating and the probability of receiving any o↵er. The former is
computed as a score-weighted average of the school quality measure, following Borusyak and Hull (Forth-
coming). Appendix Table A3 shows that follow-up rates for key outcomes are unrelated to assigned school
ratings, conditional on assignment risk.
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on selection bias rather than treatment e↵ect heterogeneity.8

The outcome observed for student i, denoted Yi, equals the potential outcome associated

with the school he or she attends. Letting Dij be an indicator for student i’s enrollment at

school j, we have:

Yi =
X

j

YijDij =
X

j

�jDij + "i. (2)

The average outcome at school j is given by E[Yi|Dij = 1]. School attendance is not randomly

assigned, so these average outcomes may be a poor guide to causal e↵ects. In particular,

for any school j, E[Yi|Dij = 1] = �j + E["i|Dij = 1] which di↵ers from �j when schools are

chosen based on factors that are correlated with "i.

Schools are also distinguished by the demographic composition of their student bodies.

Let Wj denote the share of students enrolled in school j designated as white, i.e., Wj =

E[wi | Dij = 1], where wi indicates student i’s race. Correlation between share white and

school ratings may arise because of a relationship between Wj and �j, in which case the

rating accurately reveals a demographic gap in school quality. Alternatively, this correlation

may arise at least in part because Dij is correlated with (wi, "i): a case of selection bias.

3.1 Racial Imbalance and Predictive Accuracy

Because �j is unobserved, educational authorities report an imperfect rating, Rj, computed

as a function of student achievement. As in earlier work on value-added (e.g., Angrist et al.,

2016, 2017), we treat school-level characteristics—here ratings, quality, and share white—as

random variables. Our investigation of the relationship between school ratings and racial

composition focuses on two aspects of the distribution of school ratings:

Definition. The predictive accuracy of school rating Rj is defined as ⇢R = Cov(�j ,Rj)2

V ar(�j)V ar(Rj)
.

The racial imbalance of school rating Rj is given by IR = Cov(Wj ,Rj)
V ar(Wj)

.

The predictive accuracy of a rating scheme is the r-squared from a regression of school quality

on ratings. Parents or policymakers seeking to identify e↵ective schools should prefer ratings

with higher ⇢R. A rating scheme’s racial imbalance is the slope coe�cient from a regression

of Rj on Wj. These features are defined for any choice of Rj, including �j itself, so I� denotes

the slope coe�cient from a regression of �j on Wj.9

8Angrist et al. (2017, 2021) find little evidence of e↵ect heterogeneity in lottery-based analyses of school
value-added in the cities studied here. This conclusion is supported by estimates that allow school e↵ects to
vary with student characteristics.

9In practice the school quality distributions we study, like school ratings, are year-specific. See Appendix
B.1 for details.
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Racially imbalanced rating schemes may favor schools with a higher share white regardless

of school quality. To ameliorate this, race-balanced ratings can be constructed as the residual

from a regression of Rj on Wj:

Rj = � + �Wj + R̃j., (3)

where � = IR. By construction, R̃j is uncorrelated with Wj and thus has racial imbalance

IR̃ = 0.

Although racial imbalance is easily eliminated, this may come at the cost of reduced

predictive accuracy. To describe this trade-o↵, consider first the coe�cients on ratings in

the following two predictive regressions for school quality:

�j = µ+ 'Rj + ⌫j, (4)

�j = µ̃+ '̃Rj + ⌧Wj + ⌫̃j. (5)

Predictive accuracy is the r-squared for (4), and is therefore proportional to '2, while '̃

coincides with the coe�cient from a regression of �j on the ratings residual R̃j. We refer

to ' and '̃ as forecast coe�cients, quantifying the relationship between school quality and

imperfect ratings.

Suppose that schools with a higher share of white students tend to be rated higher, as in

Figure 1: i.e. IR > 0. The two forecast coe�cients are then related as follows:

Proposition 1. Suppose IR > 0. Then, '̃ > ' if and only if ⌧ < 0.

Proof. By the omitted variables bias formula, ' = '̃+ ⌧ Cov(Rj ,Wj)
V ar(Rj)

. So, '̃ > ' if and only if

⌧ < 0 when cov(Rj,Wj) > 0.

Proposition 1 shows that, given the gradient in Figure 1, race-adjusted ratings generate

a larger forecast coe�cient whenever the coe�cient on share white in the long forecast

regression (5) is negative. This happens in a scenario in which schools with a higher share

white tend to have value-added below that of other schools with the same rating. This pattern

arises, for example, with a rating scheme that rewards share white in a school system where

race predicts "i but not school quality.

The e↵ect of racial balancing on predictive accuracy is determined by the ratio of the

forecast coe�cients defined by (4) and (5), along with ⌧ and the racial imbalance in school

quality:

Proposition 2. Suppose IR > 0 and '̃ > 0. Then ⇢R̃ > ⇢R if and only if I� < �⌧('/'̃).

Proof. See Appendix A.
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This result is especially sharp in a scenario where school quality is unrelated to race, so

I� = 0. In this case, if ratings are racially imbalanced (IR > 0) but still informative, then

⌧ < 0 and ⇢R̃ > ⇢R.10 More generally, Proposition 2 shows that when ⌧ is negative racial

adjustment increases the predictive value of ratings as long as race is a su�ciently weak

predictor of school quality. In this case, Proposition 2 shows that racial adjustment o↵ers a

free lunch, boosting predictive accuracy by eliminating racial imbalance.

An analyst interested in maximizing predictive accuracy might combine information on

racial make-up with ratings data using fitted values from (5):

�⇤
j = µ̃+ '̃Rj + ⌧Wj. (6)

This best linear predictor of school quality may improve and cannot reduce predictive accu-

racy relative to both Rj and R̃j, since the extra regressor, Wj, cannot reduce r-squared.11

The question of whether �⇤
j mitigates racial imbalance is addressed by the following result:

Proposition 3. The racial imbalance of the fitted values from regression (5) and the racial

imbalance of causal value-added coincide: I�⇤ = I�.

Proof. Cov(Wj, ⌫̃j) = 0, so Cov(Wj ,�j)
V ar(Wj)

=
Cov(Wj ,�⇤

j+⌫̃j)

V ar(Wj)
=

Cov(Wj ,�⇤
j )

V ar(Wj)
.

This result formalizes the intuition that any racial imbalance in school quality is captured

by the coe�cient on Wj in the model generating �⇤
j .

In summary, Propositions 1-3 show that the trade-o↵ between the predictive power and

racial imbalance of forecast coe�cients ' and '̃, the coe�cient ⌧ in equation (5), and the

racial imbalance of value added, I�. The challenge in applying these results is that school

quality, �j, is unobserved. To surmount this challenge, we estimate the determinants of

predictive accuracy and racial imbalance for alternative ratings using the IV VAM empirical

strategy detailed in Angrist et al. (2021). Specifically, we use instruments to estimate forecast

parameters ', '̃, and ⌧ . IV VAM also yields a measure of I�, the slope from a regression of

school quality on share white, and an estimate of the total variance of �j, needed to calculate

the predictive accuracy of each rating.

10If I� = 0, then ⌧ is proportional to Cov(�j ,Wj �↵Rj) = �↵Cov(�j , Rj) where ↵ is the coe�cient from
a regression of Wj on Rj . When IR > 0, ↵ > 0, so ⌧ < 0 when ' / Cov(�j , Rj) > 0.

11To see this for R̃j , let R̂j be the fitted values from (3) and write equation (6) as

�⇤
j = µ̃+ '̃R̂j + ('̃R̃j + ⌧Wj).

The term in parentheses on the right-hand side is orthogonal to the balanced rating, R̃j , so the variance of
�⇤
j exceeds the variance of R̃j .
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3.2 Identification and Estimation

IV VAM starts with an augmented version of regression (5) that incorporates additional

predictors of school quality. The augmented model can be written:

�j = M 0
j + ⇠j, (7)

where Mj denotes a vector of quality predictors. Mj includes a constant, school ratings,

share white, and school sector dummies. Forecast regression (7) is a linear projection, so

E[Mj⇠j] = 0 by definition of forecast residual ⇠j. Substituting this projection into the causal

model (2) yields:

Yi =
X

j

(M 0
j + ⇠j)Dij + "i

= M 0
j(i) + ⇠j(i) + "i, (8)

where Mj(i) =
P

j MjDij and ⇠j(i) =
P

j ⇠jDij denote the school characteristics and forecast

residual for student i’s school, indexed by j(i). Equation (7) is a linear projection, but

equation (8) need not be since elements of Mj(i) are correlated with "i. IV VAM therefore

uses centralized school assignment o↵ers, denoted Zij for school j, as instruments for the

school characteristics in Mj(i).12

The IV VAM estimating equation includes a vector of individual-level control variables,

Xi, including school assignment risk and other applicant characteristics. Controlling for the

latter isn’t necessary for identification, but may boost precision.13 Let ✓ denote the coe�cient

from a regression of the composite residual ⇠j(i) + "i on Xi, with associated residual ⌘i. The

IV VAM estimating equation can then be written

Yi = M 0
j(i) +X 0

i✓ + ⌘i, (9)

where E[Xi⌘i] = 0 by definition of ✓.

The addition of risk controls to the covariate vector in a linear model is su�cient to ensure

o↵er instruments Zij are uncorrelated with unobserved applicant background and ability, "i.

Importantly, however, residual ⌘i in (9) depends on a school component, ⇠j(i), as well as "i.

12An alternative instruments school enrollment indicators in equation (2), thereby estimating �j directly.
This is infeasible here, however, because some schools are undersubscribed. IV VAM addresses the identifi-
cation problem arising from the fact that we have fewer instruments than schools.

13Additional controls are functions of 5th grade math and ELA scores, the demographic variables listed
in Appendix Table A1, and year fixed e↵ects interacted with lagged scores and demographic characteristics.
Risk controls for New York include local linear functions of the relevant screened-school tie-breakers; see
Abdulkadiroğlu et al. (2022) for details.
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The former reflects determinants of value added not explained by Mj and can be thought of

as arising from violations of the IV exclusion restriction that underpins identification in this

context. Angrist et al. (2021) formulates su�cient conditions for IV VAM estimates to be

consistent in the face of such violations. These conditions require the relationship between

individual school o↵ers and residual school quality to average to zero over schools.

The IV VAM exclusion restriction is made more plausible by including strong predictors of

school quality in Mj. Such mediators reduce and perhaps even eliminate variation in residual

school quality, ⇠j. In our implementation, Mj includes the levels and progress ratings, share

white, a dummy for charter schools (in Denver), and a dummy for screened schools (in New

York). By instrumenting average test score levels and growth measures, we avoid mechanical

biases from simply regressing outcomes on outcome averages.

The parameters in (9) are estimated by two-stage least squares (2SLS). This yields es-

timates of  in equation (7), defined as the regression of �j on the full vector of school

characteristics, Mj. Coe�cients in shorter projections of �j on subsets of Mj can then be

generated by application of the omitted variables bias formula. For example, the coe�cients

in (5) are obtained from a partition such that Mj = (M 0
1j,M

0
2j)

0, with M1j = (1, Rj,Wj)0

and  = ( 0
1, 

0
2)

0 partitioned correspondingly. We then have:

(µ̃, '̃, ⌧)0 =  1 + E[M1jM
0
1j]

�1E[M1jM
0
2j] 2. (10)

This two-step approach uses 2SLS estimates of (9) as the common foundation for forecast

regressions of any shorter length. As a by-product, the minimized 2SLS minimand (an over-

identification test statistic) generates a quadratic form proportional to the variance of �j.

This variance is used in the formula for predictive accuracy.14

4 Results

School quality is unrelated to the share of enrolled students who are white in the sample

of New York schools. This can be seen in the first column of Panel A in Table 2, which

reports estimates of the projection of �j on share white and a screened school indicator for

14Specifically, the variance of ⇠j is estimated by
(Y�Q�̂)0PZ̃(Y�Q�̂)

tr(⇧̂Z0Z⇧̂)
, where Y is the vector of outcomes,

Q is the matrix of variables to be instrumented including covariates, PZ̃ is the projection matrix for the

instruments Z̃ after partialling out covariates, �̂ is the vector of 2SLS coe�cient estimates, and ⇧̂ is the
matrix of first-stage coe�cient estimates. Appendix I of Angrist et al. (2021) derives this formula. The
version used here omits bias-correction terms which yield qualitatively similar results; see Angrist et al.
(2021) for details.
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schools in New York.15 The full set of IV VAM estimates underlying these results appears

in Appendix Table A6.16 Both of the derived coe�cient estimates in column 1 of Table 2

are small and significantly insignificant. The share white coe�cient is estimated precisely

enough to rule out a racial imbalance as large as 0.124 on the basis of 95 percent confidence

interval coverage. The large racial imbalance estimate of 0.687 in column 3, by contrast,

shows that share white is highly predictive of school ratings based on test score levels—as

seen in Figure 1. Together, the results in columns 1 and 3 imply that the strong relationship

between school ratings and share white in New York reflects selection bias rather than school

quality.17

Levels ratings are weakly related to school quality in New York: the estimated forecast

coe�cient in column 2 of Table 2 (Panel A) shows that a one standard deviation improvement

in test score levels is associated with a 0.21 standard deviation increase in causal value-

added.18 Column 4 reports estimates of '̃ and ⌧ in forecast equation (5), computed by

adding share white and screened-school status to ratings as predictors of school quality.

Estimated coe�cients on the screened-school dummy and share white are both negative and

significantly di↵erent from zero. This matches the pattern discussed above, wherein schools

that enroll more white students, as well as highly sought-after screened schools, are of lower

quality than other similarly-rated schools.

Column 5 of Table 2 shows progress ratings predict New York school quality with a

forecast coe�cient of about 0.76—a marked improvement relative to the levels rating. But

progress ratings are compromised by selection bias too. Column 6 in Panel A reports an

estimated share white coe�cient of 0.22 in a regression of progress which controls for a

screened-school dummy. Column 7 shows the progress coe�cient remains high when quality

is predicted by progress and share white, but share white is again negatively related to quality.

Like the estimates in column 4, this pattern reflects the fact that quality and share white are

15Appendix Tables A4 and A5 report results from models that replace share white with share white or
Asian and with the share of students not eligible for a free or reduced price lunch (FRPL). These variations
yield results similar to those in Table 2.

16The first-stage F-statistics for these estimates, computed as Kleibergen-Paap (2006) robust Wald test
statistics, are above the rule-of-thumb threshold of 10 commonly used to diagnose weak instrument bias. The
2SLS estimates in the table are also close to just-identified IV estimates reported in Table A6, from models
where weak instrument bias is unlikely to be a concern. This just-identified estimator replaces individual
school o↵er dummies as instruments with values of the mediator at the o↵ered school, one for each mediator.
Over-identified limited information maximum likelihood and the bias-corrected IV estimator in Kolesár et al.
(2015) are likewise similar to the 2SLS estimates reported here.

17Appendix Table A7 tests the equality of IV estimates of racial imbalance in school quality and OLS
estimates of the racial imbalance in ratings. These tests reject decisively in New York.

18As detailed in Appendix B.1, each rating is scaled to have the same standard deviation as estimated
for value-added, so that the forecast coe�cient can be interpreted as the standard deviation gain in causal
value-added associated with a one standard deviation increase in the rating.
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unrelated, so that disproportionately white and screened schools are, on average, over-rated.

The fact that progress ratings exhibit modest selection bias, while improving markedly over

the predictive accuracy of the levels rating, is consistent with past findings on bias in school

value-added models (Angrist et al., 2017, 2021). The fact that racial imbalance decreases

for more accurate ratings reflects the finding that school quality is essentially uncorrelated

with race.

Analogous results for Denver, reported in Panel B of Table 2, are qualitatively similar

to those for New York, though these smaller-district estimates are less precise. Column 1

shows a statistically insignificant relationship between school quality and share white, while

Denver’s many charter schools generate a precisely estimated achievement gain of about

0.10 standard deviations. As in New York, share white predicts levels more than progress

(compare columns 3 and 6 in Panel B), but both predictive relationships for ratings are

strong. Also as in New York, multivariate quality projections for Denver yield negative

(though more imprecise) estimated coe�cients on share white when ratings are included as

an explanatory variable; see columns 4 and 7 of Panel B.19

Appendix Figure A1 highlights implications of the results in Table 2 by plotting alterna-

tive ratings against share white in New York and Denver. The figure shows the estimated

conditional expectation function (CEF) for three ratings, computing in 10-point bins, along

with a regression fit to the underlying school-level data. As in Figure 1, the relationship

between the progress rating and share white for New York schools is positive. Race-balanced

progress, computed as the residual from a regression of progress on share white, generates

a flat regression fit by construction. The best linear predictor of New York school quality

given the progress rating, share white, and screened school status (the fitted value from the

model generating column 7 of Table 2) generates a similar pattern.

IV VAM estimates suggest ratings for Denver are less compromised by selection bias than

the corresponding estimates for New York, with larger forecast coe�cients for both levels

and progress. Share white is also more strongly predictive of progress ratings in Denver than

in New York (compare the estimates for the two cities in column 6 of Table 2). Consistent

with these estimates, the CEF for the best linear predictor of Denver school quality plotted

in Panel B of Appendix Figure A1 is weakly dependent on share white. Even so, the best

linear predictor for Denver school quality rises much less steeply in share white compared to

the CEF of the raw progress rating.

Table 3 summarizes our investigation with estimates of predictive accuracy and racial

imbalance for alternative ratings. In both New York and Denver, progress ratings are far

19Denver estimates too imprecise to rule out moderate degrees of racial imbalance in causal value added.
As for New York, however, ratings are significantly more imbalanced than school quality.
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more accurate than levels ratings while also being much more weakly correlated with share

white. This improvement notwithstanding, progress remains substantially correlated with

race. Race-balanced ratings boost predictive accuracy in both cities. The best linear predic-

tor of school quality given progress ratings, share white, and a sector dummy has predictive

accuracy only slightly better than that of race-balanced progress. This is explained by the

fact that the best linear predictor of school quality depends little, if at all, on race.

5 Conclusions

This paper uses the random assignment embedded in centralized school assignment mech-

anisms to study the relationship between school ratings, school quality, and student race.

In Denver and New York middle schools, the fact that schools with more white students

are highly rated reflects selection bias rather than educational quality. As a result, rat-

ings purged of correlation with race predict school quality as well or better than standard

measures.20

Denver and New York are just two districts, of course; but the fact that our analysis

yields similar conclusions in both is noteworthy. Denver enrolls many more Hispanic students

and runs a unified admissions system that includes charter schools. It’s also worth noting

that the correlation between race and accountability measures documented in Figure 1 is

visible in districts nationwide. Across all US schools in 2018, a regression of GreatSchools’

levels school ratings on share white yields a coe�cient of 0.632 while the corresponding

regression for the GreatSchools’ progress measure is only 0.310 (see Appendix Table A8;

these regressions control for district fixed e↵ects and charter status).21 Larger di↵erences in

correlation appear in New York State and Colorado, the states containing our study districts.

Thus estimates for many schools beyond those in New York City and Denver are consistent

with our claim that the association between race and achievement levels in the typical urban

district is primarily due to selection bias. The growing importance of centralized assignment

should allow more rigorous validation of this claim in the not-too-distant future.22 An equally

important question for future work, requiring empirical methods distinct from those used

here, is whether our findings extend to racial imbalance across districts.

20Other e↵orts in this direction, inspired by similar concerns with possibly misleading racial imbalance,
include the GreatSchools Equity Rating (https://www.greatschools.org/gk/ratings-methodology/
#methodology-equity-rating).

21Levels is GreatSchools’ Test Score Rating, and progress is GreatSchools’ Student Progress Rating when
available and Academic Progress Rating otherwise.

22A review of enrollment portals in the 100 largest districts shows more than a third of urban students
attend schools in districts that assign seats centrally, while 83% attend schools in districts with at least some
random assignment. See Appendix Table A9 for these statistics.
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Our analysis leaves open the question of how racially-balanced school ratings might a↵ect

household decision-making. Households appear to respond to school performance ratings

(Hastings and Weinstein, 2008; Bergman and Hill, 2018; Bergman et al., 2020; Houston and

Henig, 2023; Campos and Kearns, 2023). Credible racially-balanced quality information

may therefore increase the demand for high-quality schools with lower white enrollment.

At the same time, school choice may respond more to peer characteristics than to value-

added (Rothstein, 2006; Abdulkadiroğlu et al., 2020). We hope to study the extent to which

households respond to improved measures of school quality in future work.

A Appendix Proof of Proposition 2

Predictive accuracy for Rj and R̃j is given by ⇢R = '2V ar(Rj)
V ar(�j)

and

⇢R̃ =
'̃2V ar(R̃j)

V ar(�j)
=
'̃2 (V ar(Rj)� �2V ar(Wj))

V ar(�j)
,

respectively, where the latter expression uses fact that the fitted values and residuals in

regression (3) are uncorrelated. The change in r-squared after residualizing is therefore

proportional to

(⇢R̃ � ⇢R)V ar(�j) = '̃2
�
V ar(Rj)� �2V ar(Wj)

�
� '2V ar(Rj)

= ('̃� ')('̃+ ')V ar(Rj)� '̃2�2V ar(Wj)

= �⌧�V ar(Wj)

V ar(Rj)
('̃+ ')V ar(Rj)� '̃2�2V ar(Wj)

= �
�
⌧('̃+ ') + '̃2�

�
�V ar(Wj), (11)

using the fact that '̃ � ' = �⌧�V ar(Wj)
V ar(Rj)

by the proof to Proposition 1 and the definition

of � = Cov(Wj ,Rj)
V ar(Wj)

. Since � = IR by definition and IR > 0, equation (11) shows that when

'̃ > 0, ⇢R̃ > ⇢R if and only if

⌧ + '̃� < �⌧ '
'̃
. (12)

By the omitted variables bias formula ⌧ + '̃� = I�, completing the proof. ⇤
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Abdulkadiroğlu, A., J. D. Angrist, Y. Narita, and P. A. Pathak (2017): “Re-
search Design Meets Market Design: Using Centralized Assignment for Impact Evalua-
tion,” Econometrica, 85, 1373–1432.

——— (2022): “Breaking Ties: Regression Discontinuity Design Meets Market Design,”
Econometrica, 90, 117–151.
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Figure 1. Levels, Progress, and Race

A. New York
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B. Denver

/HYHOV�6ORSH�&RHIILFLHQW��6(�������������
3URJUHVV�6ORSH�&RHIILFLHQW��6(����������������

�

��

��

��

$Y
HU
DJ
H�
UD
WLQ
J

� �� �� �� �� �� �� ��

6KDUH�ZKLWH

�/HYHOV �3URJUHVV

Notes: Binned scatterplots depict average levels and progress ratings conditional on the share of students
at a school that are white. Bins are defined by 0.1 increments in share white with the last bin grouping
schools with share white � 0.6. The levels rating is the mean share of students deemed proficient in math
and ELA, based on sixth-grade state assessment scores. The progress rating is computed using the student
growth percentile models described in Appendix B.1. Ratings are mean zero and scaled to have standard
deviation equal to the standard deviation of school quality across schools in the district, roughly 0.2 in both
cities.
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Table 1. Statistical Tests for Balance

Uncontrolled Controlled Uncontrolled Controlled

(1) (2) (3) (4) 

Demographics

Hispanic -0.169 0.037 -0.481 0.033

(0.008) (0.025) (0.014) (0.045)

Black -0.540 -0.013 0.020 0.006

(0.007) (0.023) (0.010) (0.033)

Asian 0.357 -0.030 -0.006 0.012

(0.006) (0.016) (0.005) (0.014)

White 0.360 -0.002 0.443 -0.043

(0.005) (0.013) (0.013) (0.036)

Female 0.020 0.034 -0.051 0.006

(0.008) (0.025) (0.015) (0.046)

Free/reduced price lunch -0.274 0.045 -0.519 0.037

(0.007) (0.020) (0.014) (0.041)

Special education -0.092 0.003 -0.054 0.000

(0.006) (0.020) (0.009) (0.027)

English language learner 0.017 0.031 -0.282 0.019

(0.005) (0.017) (0.014) (0.046)

Baseline scores

Math (standardized) 1.02 0.020 0.858 0.090

(0.015) (0.046) (0.030) (0.092)

ELA (standardized) 0.759 -0.016 0.780 0.013

(0.015) (0.048) (0.029) (0.088)

N 184,760 46,095 37,089 8,100

New York Denver

Notes: This table reports balance statistics, estimated by regressing baseline covariates on the estimated
progress rating of the o↵ered school and an indicator for any o↵er. Rows report the estimated coe�cient on
the former. Estimates in columns 2 and 4 control for expected progress rating, any o↵er risk, and running
variable controls in the New York sample. Expected progress rating is computed as a score-weighted average
of the school quality measure following Borusyak and Hull (Forthcoming). Robust standard errors are
reported in parentheses.
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Table 2. Projections of School Quality and School Ratings on School Characteristics

Value-added 

projection 

(derived)

Value-added 

projection 

(derived)

Rating 

projection 

(OLS)

Value-added 

projection 

(derived)

Value-added 

projection 

(derived)

Rating 

projection 

(OLS)

Value-added 

projection 

(derived)

Dependent variable:

School 

quality (β)
School 

quality (β)
Test score 

levels (R )

School 

quality (β)
School 

quality (β)
Test score 

progress (R )

School 

quality (β)
(1) (2) (3) (4) (5) (6) (7) 

Test score levels 0.214 0.391

(0.053) (0.060)

Test score progress 0.757 0.785

(0.037) (0.037)

Screened school dummy -0.052 0.101 -0.092 -0.034 -0.025

(0.035) (0.014) (0.035) (0.016) (0.032)

Share white 0.004 0.687 -0.265 0.222 -0.171

(0.061) (0.024) (0.069) (0.026) (0.057)

First-stage F

N (school-year)

Test score levels 0.468 1.28

(0.124) (0.207)

Test score progress 0.859 0.975

(0.084) (0.099)

Charter school dummy 0.095 0.098 -0.031 0.141 -0.043

(0.037) (0.011) (0.046) (0.020) (0.040)

Share white 0.188 0.881 -0.941 0.433 -0.235

(0.135) (0.027) (0.225) (0.051) (0.135)

First-stage F

N (school-year)

Test score levels Test score progress

Panel A. New York

1501

Panel B. Denver

373

15.1

23.2

Notes: Estimates in columns 1-2, 4-5, and 7 are from projections of school quality on the predictors listed
at left. These estimates are derived from the long IV VAM coe�cient estimates reported in Table A6 and
computed via the omitted-variables bias formula as described in the text. Estimates in columns 3 and 6 are
from models that predict ratings. These come from regressions of school ratings on share white and a school
sector dummy. Robust standard errors are reported in parentheses.
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Table 3. Predictive Accuracy and Racial Imbalance

Predictive 
accuracy ( )

Racial 
imbalance ( )    

Predictive 
accuracy ( )

Racial 
imbalance ( )    

(1) (2) (3) (4) 

1. Test score levels 0.046 0.702 0.219 0.846
(0.026) (0.027)

2. Test score progress 0.573 0.217 0.738 0.384
(0.026) (0.050)

3. Race-balanced progress 0.596 0.000 0.751 0.000
- -

4. Best linear predictor 0.598 -0.004 0.783 0.154
(0.061) (0.134)

New York Denver

Notes: This table reports predictive accuracy (⇢R) and racial imbalance (IR) for alternative school ratings.
Predictive accuracy is derived from IV VAM regressions of causal school quality on ratings. In rows 1-2
and 4, racial imbalance is the bivariate coe�cient from a regression of ratings on share white. Test score
levels and progress are estimated as described in Appendix B.1. The best linear predictor is the fitted value
obtained from model (6) augmented with a sector dummy. Race-balanced progress is the residual from a
regression of progress on share white. Robust standard errors reported in parentheses.
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Appendix Figures and Tables

Figure A1. Adjusted Ratings and Race
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Notes: These binned scatterplots depict the relationship between three sorts of progress ratings and the share
of students at a school that are white. Red triangles correspond to the benchmark progress rating, while
green squares correspond to the racially-balanced progress rating obtained as the residual from equation (3).
Orange diamonds correspond to the best linear predictor of school value-added, obtained as the fitted values
from (6) augmented with a sector dummy. Bins are defined by 0.1 increments in share White with the last
bin grouping schools with share white � 0.6. Ratings are mean zero and scaled to have standard deviation
equal to the standard deviation of school quality across schools in the district.



Table A1. Descriptive Statistics

All With risk All With risk

(1) (2) (3) (4) 

Demographics

Hispanic 0.413 0.445 0.592 0.581

Black 0.231 0.254 0.125 0.140

Asian 0.184 0.171 0.032 0.033

White 0.154 0.110 0.210 0.201

Female 0.494 0.484 0.493 0.494

Free/reduced price lunch 0.731 0.763 0.723 0.703

Special education 0.201 0.215 0.102 0.087

English language learner 0.113 0.113 0.393 0.416

Baseline scores

Math (standardized) 0.000 -0.063 0.000 0.077

ELA (standardized) 0.000 -0.055 0.000 0.070

Enrollment

Screened 0.067 0.044 0.000 0.000

Lottery 0.933 0.956 1.000 1.000

Share non-compliant 0.268 0.324 0.300 0.291

Share not offered 0.149 0.134 0.182 0.048

Students 184,760 46,095 37,089 8,100

Schools 624 594 80 75

Lotteries (schools with risk) 448 67

New York Denver

Notes: This table describes the Denver and New York student samples used to compute ratings and estimate
school quality. Column 1 show statistics for New York middle school students enrolled in 6th grade in the
2016-17 through 2018-19 school years. Column 3 shows descriptive statistics for Denver students enrolled
in 6th grade in the 2012-13 through 2018-19 school years. Columns 2 and 4 describe the corresponding
samples of applicants with assignment risk at at least one school. Baseline characteristics and lagged scores
are from 5th grade. Baseline scores are standardized to be mean zero and standard deviation one in the
student-level test score distribution, separately by year. Screened schools are defined as schools without any
lottery programs. The share non-compliant is defined as the proportion of students who enroll other than
where o↵ered a seat; this includes students receiving no o↵ers.
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Table A2. School Counts

Non-screened Screened Charter All schools TPS Charter All schools
(1) (2) (3) (4) (5) (6) (7) 

In sample 1359 142 1501 223 150 373
Not in sample 80 3 83 52 10 62
Total 1439 145 1584 275 160 435

In sample 433 47 90 570 31 22 53
Not in sample 17 0 28 45 9 2 11
Total 450 47 118 615 40 24 64

New York Denver
TPS

Panel A. School-year counts

Panel B. School counts (2016)

Notes: This table describes the schools in the IV estimation sample. These schools enroll at least one student
with non-degenerate risk. The columns labelled “TPS” indicate traditional public schools. Screened schools
in New York are schools that o↵er only screened programs. In New York, student-level charter enrollment
is only observed in the 2016-2017 school year. In Panel A, charter school-years are counted as non-screened
observations.
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Table A3. Tests for Di↵erential Attrition

New York Denver

(1) (2) 

Offered progress 0.032 0.022

(0.019) (0.038)

N 53,094 9,234

Mean follow-up rate 0.898 0.896

Notes: This table reports di↵erential attrition estimates. These estimates come from regressions of a follow-
up indicator on the estimated progress rating of the o↵ered school, controlling for expected progress rating
and running variable controls in the New York sample. Robust standard errors are reported in parentheses.

5



Table A4. Projections of School Quality and School Ratings on Share White and Asian

Value-added 

projection 

(derived)

Value-added 

projection 

(derived)

Rating 

projection 

(OLS)

Value-added 

projection 

(derived)

Value-added 

projection 

(derived)

Rating 

projection 

(OLS)

Value-added 

projection 

(derived)

Dependent variable:

School 

quality (β)
School 

quality (β)
Test score 

levels (R )

School 

quality (β)
School 

quality (β)
Test score 

progress (R )

School 

quality (β)
(1) (2) (3) (4) (5) (6) (7)

Test score levels 0.164 0.536

(0.055) (0.071)

Test score progress 0.738 0.812

(0.037) (0.038)

Screened school dummy -0.047 0.101 -0.101 -0.037 -0.017

(0.035) (0.012) (0.035) (0.016) (0.032)

Share white and Asian -0.046 0.541 -0.336 0.199 -0.207

(0.046) (0.013) (0.062) (0.016) (0.045)

First-stage F

N (school-year)

Test score levels 0.482 1.37

(0.148) (0.221)

Test score progress 0.843 0.945

(0.089) (0.097)

Charter school dummy 0.100 0.099 -0.033 0.139 -0.033

(0.036) (0.011) (0.045) (0.020) (0.038)

Share white and Asian 0.175 0.834 -0.977 0.405 -0.210

(0.126) (0.025) (0.219) (0.049) (0.122)

First-stage F

N (school-year)

Test score levels Test score progress

Panel A. New York

1501

Panel B. Denver

373

15.1

9.09

Notes: This table reports estimates from projections of levels and progress school ratings and causal value
added on school characteristics, including the share white and Asian. The models and derivation procedure
used to compute these estimates are as the estimates in Table 2. Robust standard errors are reported in
parentheses.
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Table A5. Projections of School Quality and School Quality on Share Non-FRPL

Value-added 

projection 

(derived)

Value-added 

projection 

(derived)

Rating 

projection 

(OLS)

Value-added 

projection 

(derived)

Value-added 

projection 

(derived)

Rating 

projection 

(OLS)

Value-added 

projection 

(derived)

Dependent variable:

School 

quality (β)
School 

quality (β)
Test score 

levels (R )

School 

quality (β)
School 

quality (β)
Test score 

progress (R )

School 

quality (β)

(1) (2) (3) (4) (5) (6) (7)

Test score levels 0.232 0.451

(0.052) (0.063)

Test score progress 0.761 0.774

(0.037) (0.037)

Screened school dummy -0.050 0.060 -0.077 -0.040 -0.019

(0.035) (0.013) (0.035) (0.016) (0.032)

Share non-FRPL 0.018 0.656 -0.278 0.144 -0.094

(0.050) (0.018) (0.059) (0.024) (0.046)

First-stage F

N (school-year)

Test score levels 0.443 1.29

(0.147) (0.213)

Test score progress 0.851 0.941

(0.083) (0.096)

Charter school dummy 0.087 0.066 -0.011 0.124 -0.018

(0.036) (0.012) (0.041) (0.020) (0.037)

Share non-FRPL 0.151 0.745 -0.842 0.344 -0.178

(0.112) (0.023) (0.188) (0.044) (0.109)

First-stage F

N (school-year)

Test score levels Test score progress

Panel A. New York

1501

Panel B. Denver

373

20.4

10.9

Notes: This table reports estimates from projections of levels and progress school ratings and causal value
added on school characteristics, including the share not eligible for a free or reduced-price lunch. The models
and derivation procedure used to compute these estimates are as the estimates in Table 2. Robust standard
errors are reported in parentheses.
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Table A6. IV VAM Regressions

NYC Denver NYC Denver

(1) (2) (3) (4) 

Mediators

Test score levels -0.140 0.417 -0.234 -0.006

(0.064) (0.230) (0.102) (0.437)

Test score progress 0.839 0.847 1.10 1.05

(0.044) (0.116) (0.064) (0.151)

Screened school dummy -0.009 0.011

(0.033) (0.037)

Charter school dummy -0.066 0.010

(0.044) (0.063)

Share white -0.087 -0.547 -0.051 -0.129

(0.064) (0.217) (0.079) (0.340)

First-stage F 23.2 15.1 608 31.7

Value-added std. dev. 0.194 0.217

N 46,095 8,100 46,095 8,100

Over-identified (school 

assignment instruments)

Just-identified (offered 

mediator instruments)

Notes: This table reports IV VAM parameter estimates. These estimates are used to obtain the estimates
reported in Table 2. The set of listed mediators is treated as endogenous. Columns 1 and 2 use individual
school assignment o↵er dummies as instruments for 2SLS estimation. Columns 3 and 4 use values of the
mediator at the o↵ered school as instruments. All models control for school assignment risk and year fixed
e↵ects fully interacted with the demographic variables listed in Appendix Table A1 and cubic functions
of 5th grade math and ELA scores. New York models also include local linear functions of the relevant
screened-school tie-breakers. Ratings are demeaned and scaled to have variance matching that of school
quality across schools in the district. Robust standard errors are reported in parentheses.
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Table A7. Tests for Equality of IV and OLS Estimates of Racial Imbalance

Test score 
levels

Test score 
progress

Test score 
levels

Test score 
progress

(1) (2) (3) (4) 

Racial imbalance
IV (school quality)

OLS 0.687 0.222 0.687 0.222
(0.024) (0.026) (0.024) (0.026)

IV - OLS -0.683 -0.219 -0.683 -0.219
(0.055) (0.055) (0.066) (0.068)
[0.000] [0.000] [0.000] [0.001]

Racial imbalance
IV (school quality)

OLS 0.881 0.433 0.881 0.433
(0.027) (0.051) (0.027) (0.051)

IV - OLS -0.693 -0.246 -0.693 -0.246
(0.132) (0.125) (0.125) (0.131)
[0.000] [0.049] [0.000] [0.060]

Hausman Joint estimation

Panel A: New York

0.004 0.004
(0.061) (0.062)

Panel B: Denver

0.188 0.188
(0.135) (0.122)

Notes: This table reports tests for equality between the IV estimates of the racial imbalance of school quality
and OLS estimates of the racial imbalance of either the levels rating or the progress rating. Columns 1 and 2
use a Hausman (1978) test which takes as the covariance between the IV and OLS estimators the variance of
the OLS estimator. Columns 3 and 4 compute the covariance between the IV and OLS estimators by jointly
estimating these models. Standard errors, clustered by school-year, are reported in parentheses. P-values
for the test of IV and OLS equality are reported in brackets.
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Table A8. Comparison of Racial Imbalance in GreatSchools’ Levels and Progress Ratings

Test score 
levels

Test score 
progress

(1) (2) 

Charter school dummy 0.019 0.015
(0.005) (0.006)

Share white 0.632 0.310
(0.004) (0.006)

N (schools) 72573 61247

Charter school dummy - -

Share white 0.625 0.095
(0.022) (0.030)

N (schools) 3979 3099

Charter school dummy 0.019 0.015
(0.005) (0.006)

Share white 0.735 0.302
(0.022) (0.031)

N (schools) 1210 1474

Panel A: USA

Panel B: New York State

Panel C: Colorado

Notes: This table reports racial imbalance regressions for GreatSchools levels and progress ratings in the
2018 school year. Panel A includes all public schools in the United States with GreatSchools ratings, while
Panels B and C restrict the sample to schools in New York state and Colorado, respectively. Ratings
are standardized by state to have mean zero and standard deviation 0.2, roughly the standard deviation of
school quality in both NYC and Denver. All models include district fixed e↵ects, which absorb charter school
indicators in New York. Levels is GreatSchools’ Test Score Rating, and progress is GreatSchools’ Student
Progress Rating when available and Academic Progress Rating otherwise. See Appendix B.1 and https:
//www.greatschools.org/gk/ratings-methodology/ for more information on GreatSchools ratings.
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Table A9. Centralized Assignment in Large Public School Districts

All Minority
(1) (2) 

All districts
Enrollment (% of all districts) 100% 91%
N 100 87

Centralized
Enrollment (% of all districts) 36% 34%
N 26 24

Partially centralized
Enrollment (% of all districts) 69% 65%
N 59 52

Any randomness
Enrollment (% of all districts) 83% 77%
N 76 66

Notes: This table describes the student assignment mechanism for the 100 largest public school districts
in the United States. Column 2 considers districts enrolling at least 30% Black and Hispanic students.
Centralized districts employ mechanisms with quasi-random o↵er variation for traditional public schools.
Partially centralized districts include those with a centralized aftermarket for school choice transfers away
from neighborhood schools. Any randomness districts employ mechanisms with any random o↵er variation,
for instance decentralized lotteries at non-traditional public schools. Further details on definitions and coding
procedures are available on request. Enrollment data reflect fall 2019 figures from the NCES.
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B Data Appendix

B.1 School Quality Measures

The measures used here are motivated by the “test score” and “progress” ratings published

by GreatSchools.org. The test score rating is a levels measure that uses student proficiency

rates as inputs. The progress rating uses state-reported estimates of student growth as

inputs. Our progress ratings are based on models underlying the “growth” rating reported

by Colorado and the student growth percentile estimates reported by New York.23

Our computation di↵ers in a few ways from GreatSchools and state ratings because we

are interested in sixth-grade ratings for specific years and outcomes; it’s sometimes unclear

which grades and years were used to compute published ratings. Also, GreatSchools rat-

ings transform state-reported inputs into a discrete 1-10 rating; we omit this step. Like

GreatSchools ratings, our computation is year-specific.24

Our levels rating averages the share of students who are proficient in math and the share

of students who are proficient in English Language Arts (ELA), as measured by sixth-grade

achievement tests. Formally, this is Rj = (E[qmi | Dij = 1] + E[qei | Dij = 1])/2, where

qsi indicates a student who is deemed proficient in subject s (math or ELA). Students are

deemed proficient when their scores cross state-determined cuto↵s.

Our progress rating is derived from estimates of student growth percentile models. Nei-

ther of these procedures involve simple di↵erence-based measures of growth; rather, they

adjust for lagged achievement. Nevertheless, the resulting measures are often called a “stu-

dent growth percentile,” or SGP (Castellano and Ho, 2013). The underlying models are

described in New York State Education Department (2020) for New York and Colorado

Department of Education (2019) for Colorado.

For purposes of our analysis, New York growth percentiles are computed by first esti-

mating the regression:

Y s
i = �s +X 0

i�
s + ⌘si ,

for each subject s 2 {m, e}. Here Xi is a control vector including 3rd, 4th, and 5th grade

achievement scores. Missing lagged scores are coded to zero, with indicators for missing

scores also included in Xi. From these regressions we compute the percentile rank, rsi , of the

residual ⌘si in the city distribution of students. The progress rating is then the mean of the

23These ratings can be found through Colorado’s Performance Snapshot (https://www.cde.state.co.
us/code/accountability-performancesnapshot) and the “ACC EM Growth” table in New York’s Report
Card Database (https://data.nysed.gov/downloads.php).

24See https://www.greatschools.org/gk/ratings-methodology/ for more information on the
GreatSchools ratings computation.
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school average math and ELA ranks: Rj = (E[rmi | Dij = 1] + E[rei | Dij = 1])/2.

Student growth percentiles for Denver are computed using quantile regression. This

procedure begins by using quantile regression to fit conditional quantiles as a function of

the control vector, Xi, listed above. Quantile regression coe�cients are computed for every

percentile from 1-99. The Denver percentile rank is the quantile value, ⌧ , that minimizes

Y s
i �X 0

i�̂
s
⌧ , where �̂

s
⌧ is the estimated vector of quantile regression coe�cients for percentile

⌧ . As in New York, subject-specific results are averaged to produce a single progress rating

for each school and year.

B.2 Standardization of Outcomes and Ratings

The primary outcome for our analysis is constructed by first summing each student’s scaled

math and ELA sixth-grade test scores, then standardizing this sum to have mean zero and

standard deviation one, separately by city and year. Year-specific school value added, �j, is

therefore measured in units of student-level test score standard deviations.

To facilitate comparisons of forecast coe�cients across ratings, alternative ratings are

scaled to have the same standard deviation as causal value-added. Specifically, we estimate

the IV VAM model (9) and use the results to form an estimate �̂� of the standard deviation

of causal value-added, as described in Angrist et al. (2021). For each year, we then multiply

each rating (deviated from its mean) by the ratio of �̂� to its own standard deviation. This

results in a rating with mean zero and standard deviation �̂�. The forecast coe�cients in

Table 2 can therefore be interpreted as gains in standard deviations of causal value-added

associated with a one standard-deviation increase in school ratings. A rating that accurately

orders schools according to causal value-added should be expected to generate a forecast

coe�cient of roughly unity. It’s worth noting, however, that the forecast coe�cient may not

be exactly one even for a rating that ranks schools exactly in order of �j, since value-added

and school ratings are measured in di↵erent units, even after rescaling.
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